

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Azure Distributed Data Engineering Toolkit

The Azure Distributed Data Engineering Toolkit is a project that allows Sparks users to easily spin up a Spark cluster in Azure.

Getting Started

The minimum requirements to get started with this package are:

	Python 3.5+, pip 9.0.1+

	An Azure account

	An Azure Batch account

	An Azure Storage account

Cloning and installing the project

	Clone the repo

	Make sure you are running python 3.5 or greater.
If the default version on your machine is python 2 make sure to run the following commands with pip3 instead of pip.

	Install aztk:

pip install -e .

	Initialize your environment:

Navigate to the directory you wish to use as your spark development environment, and run:

aztk spark init

This will create a .aztk folder with preset configuration files in your current working directory.

If you would like to initialize your AZTK clusters with a specific development toolset, please pass one of the following flags:

aztk spark init --python
aztk spark init --R
aztk spark init --scala
aztk spark init --java

If you wish to have global configuration files that will be read regardless of your current working directory, run:

aztk spark init --global

This will put default configuration files in your home directory, ~/. Please note that configuration files in your current working directory will take precident over global configuration files in your home directory.

Setting up your accounts

Using the account setup script

A script to create and configure the Azure resources required to use aztk is provided. For more more information and usage, see Getting Started Script.

Manual resource creation

To finish setting up, you need to fill out your Azure Batch and Azure Storage secrets in .aztk/secrets.yaml. We'd also recommend that you enter SSH key info in this file too.

Please note that if you use ssh keys and a have a non-standard ssh key file name or path, you will need to specify the location of your ssh public and private keys. To do so, set them as shown below:

default:
 # SSH keys used to create a user and connect to a server.
 # The public key can either be the public key itself(ssh-rsa ...) or the path to the ssh key.
 # The private key must be the path to the key.
 ssh_pub_key: ~/.ssh/my-public-key.pub
 ssh_priv_key: ~/.ssh/my-private-key

	Log into Azure
If you do not already have an Azure account, go to https://azure.microsoft.com/ to get started for free today.

Once you have one, simply log in and go to the Azure Portal [https://portal.azure.com] to start creating your Azure Batch account and Azure Storage account.

Using AAD

To get the required keys for your Azure Active Directory (AAD) Service Principal, Azure Batch Account and Azure Storage Account, please follow these instructions. Note that this is the recommended path for use with AZTK, as some features require AAD and are disabled if using Shared Key authentication.

	Register an Azure Active Directory (AAD) Application

	Navigate to Azure Active Direcotry by searching in "All Services". Click "Properties" and record the value in the "Directory ID" field. This is your tenant ID.

[image:]

	Navigate to App Registrations by searching in "All Services".

[image:]

	Click the "+ New application registration" option at the top left of the window. Fill in the necessary fields for the "Create" form. For "Application type" use "Web app/ API."

[image:]

	Click on the newly created App to reveal more info. Record the Application ID (for use as Client ID). Then click "Settings", then "Keys." Create a new password using the provided form, ensure to copy and save the password as it will only be revealed once. This password is used as the credential in secrets.yaml.

[image:]

	Create a Storage Account

	Click the '+' button at the top left of the screen and search for 'Storage'. Select 'Storage account - blob, file, table, queue' and click 'Create'

[image:]

	Fill in the form and create the Storage account.

[image:]

	Record the Storage account's resource ID.

[image:]

	Give your AAD App "Contributor" permissions to your Batch Account. Click "Access Control (IAM)", then "+ Add" at the top left. Fill in the "Add Permissions" form and save.

[image:]

	Create a Batch Acccount

	Click the '+' button at the top left of the screen and search for 'Compute'. Select 'Batch' and click 'Create'

[image:]

	Fill in the form and create the Batch account.

[image:]

	Navigate to your newly created Batch Account and record it's resource ID by clicking "Properties" and copying.

[image:]

	Give your AAD App "Contributor" permissions to your Batch Account. Click "Access Control (IAM)", then "+ Add" at the top left. Fill in the "Add Permissions" form and save.

[image:]

	Save your account credentials into the secrets.yaml file

	Open the secrets.yaml file in the .aztk folder in your current working directory (if .aztk doesn't exist, run aztk spark init). Fill in all of the fields as described below.

	Fill in the Service princripal block with your recorded values as shown below:

service_principal:
 tenant_id: <AAD Diretory ID>
 client_id: <AAD App Application ID>
 credential: <AAD App Password>
 batch_account_resource_id: </batch/account/resource/id>
 storage_account_resource_id: </storage/account/resource/id>

Using Shared Keys

Please note that using Shared Keys prevents the use of certain AZTK features including Mixed Mode clusters and support for VNETs.

To get the required keys for Azure Batch and Azure Storage, please follow the below instructions:

	Create a Storage account

	Click the '+' button at the top left of the screen and search for 'Storage'. Select 'Storage account - blob, file, table, queue' and click 'Create'

[image:]

	Fill in the form and create the Storage account.

[image:]

	Create a Batch account

	Click the '+' button at the top left of the screen and search for 'Compute'. Select 'Batch' and click 'Create'

[image:]

	Fill in the form and create the Batch account.

[image:]

	Save your account credentials into the secrets.yaml file

	Open the secrets.yaml file in the .aztk folder in your current working directory (if .aztk doesn't exist, run aztk spark init). Fill in all of the fields as described below.

	Go to the accounts in the Azure portal and copy pase the account names, keys and other information needed into the
secrets file.

Storage account

For the Storage account, copy the name and one of the two keys:

[image:]

Batch account

For the Batch account, copy the name, the url and one of the two keys:

[image:]

Next Steps

	Create a cluster

	Run a Spark job

Getting Started Script

The provided account setup script creates and configures all of the required Azure resources.

The script will create and configure the following resources:

	Resource group

	Storage account

	Batch account

	Azure Active Directory application and service principal

The script outputs all of the necessary information to use aztk, just copy the output into the .aztk/secrets.yaml file created when running aztk spark init.

Usage

Copy and paste the following into an Azure Cloud Shell [https://shell.azure.com]:

wget -q https://raw.githubusercontent.com/Azure/aztk/master/account_setup.sh &&
chmod 755 account_setup.sh &&
/bin/bash account_setup.sh

A series of prompts will appear, and you can set the values you desire for each field. Default values appear in brackets [] and will be used if no value is provided.

Azure Region [westus]:
Resource Group Name [aztk]:
Storage Account Name [aztkstorage]:
Batch Account Name [aztkbatch]:
Active Directory Application Name [aztkapplication]:
Active Directory Application Credential Name [aztk]:

Once the script has finished running you will see the following output:

service_principal:
 tenant_id: <AAD Diretory ID>
 client_id: <AAD App Application ID>
 credential: <AAD App Password>
 batch_account_resource_id: </batch/account/resource/id>
 storage_account_resource_id: </storage/account/resource/id>

Copy the entire service_principal section in your .aztk/secrets.yaml. If you do not have a secrets.yaml file, you can create one in your current working directory by running aztk spark init.

Now you are ready to create your first aztk cluster. See Creating a Cluster.

Clusters

In the Azure Distributed Data Engineering Toolkit, a cluster is primarily designed to run Spark jobs. This document describes how to create a cluster to use for Spark jobs. Alternitavely for getting started and debugging you can also use the cluster in interactive mode which will allow you to log into the master node and interact with the cluster from there.

Creating a Cluster

Creating a Spark cluster only takes a few simple steps after which you will be able to SSH into the master node of the cluster and interact with Spark. You will be able to view the Spark Web UI, Spark Jobs UI, submit Spark jobs (with spark-submit), and even interact with Spark in a Jupyter notebook.

For the advanced user, please note that the default cluster settings are preconfigured in the .aztk/cluster.yaml file that is generated when you run aztk spark init. More information on cluster config here.

Commands

Create a Spark cluster:

aztk spark cluster create --id <your_cluster_id> --vm-size <vm_size_name> --size <number_of_nodes>

For example, to create a cluster of 4 Standard_A2 nodes called 'spark' you can run:

aztk spark cluster create --id spark --vm-size standard_a2 --size 4

You can find more information on VM sizes here. [https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes] Please note that you must use the official SKU name when setting your VM size - they usually come in the form: "standard_d2_v2".

Note: The cluster id (--id) can only contain alphanumeric characters including hyphens and underscores, and cannot contain more than 64 characters. Each cluster must have a unique cluster id.

By default, you cannot create clusters of more than 20 cores in total. Visit this page [https://docs.microsoft.com/en-us/azure/batch/batch-quota-limit#view-batch-quotas] to request a core quota increase.

Low priority nodes

You can create your cluster with low-priority [https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms] VMs at an 80% discount by using --size-low-pri instead of --size. Note that these are great for experimental use, but can be taken away at any time. We recommend against this option when doing long running jobs or for critical workloads.

Mixed Mode

You can create clusters with a mixed of low-priority [https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms] and dedicated VMs to reach the optimal balance of price and availability. In Mixed Mode, your cluster will have both dedicated instances and low priority instances. To mimize the potential impact on your Spark workloads, the Spark master node will always be provisioned on one of the dedicated nodes while each of the low priority nodes will be Spark workers.

Please note, to use Mixed Mode clusters, you need to authenticate using Azure Active Directory (AAD) by configuring the Service Principal in .aztk/secrets.yaml. You also need to create a Virtual Network (VNET) [https://azure.microsoft.com/en-us/services/virtual-network/], and provide the resource ID to a Subnet within the VNET in your ./aztk/cluster.yaml` configuration file.

Setting your Spark and/or Python versions

By default, the Azure Distributed Data Engineering Toolkit will use Spark v2.2.0 and Python v3.5.4. However, you can set your Spark and/or Python versions by configuring the base Docker image used by this package.

Listing clusters

You can list all clusters currently running in your account by running

aztk spark cluster list

Viewing a cluster

To view details about a particular cluster run:

aztk spark cluster get --id <your_cluster_id>

Note that the cluster is not fully usable until a master node has been selected and it's state is idle.

For example here cluster 'spark' has 2 nodes and node tvm-257509324_2-20170820t200959z is the mastesr and ready to run a job.

Cluster spark
--
State: active
Node Size: standard_a2
Nodes: 2
| Dedicated: 2
| Low priority: 0

Nodes	State	IP:Port	Master
tvm-257509324_1-20170820t200959z | idle | 40.83.254.90:50001 |
tvm-257509324_2-20170820t200959z | idle | 40.83.254.90:50000 | *

Deleting a cluster

To delete a cluster run:

aztk spark cluster delete --id <your_cluster_id>

Deleting a cluster also permanently deletes any data or logs associated with that cluster. If you wish to persist this data, use the --keep-logs flag.

You are charged for the cluster as long as the nodes are provisioned in your account. Make sure to delete any clusters you are not using to avoid unwanted costs.

Run a command on all nodes in the cluster

To run a command on all nodes in the cluster, run:

aztk spark cluster run --id <your_cluster_id> "<command>"

The command is executed through an SSH tunnel.

Copy a file to all nodes in the cluster

To securely copy a file to all nodes, run:

aztk spark cluster copy --id <your_cluster_id> --source-path </path/to/local/file> --dest-path </path/on/node>

The file will be securely copied to each node using SFTP.

Interactive Mode

All other interaction with the cluster is done via SSH and SSH tunneling. If you didn't create a user during cluster create (aztk spark cluster create), the first step is to enable to add a user to the master node.

Make sure that the .aztk/secrets.yaml file has your SSH key (or path to the SSH key), and it will automatically use it to make the SSH connection.

aztk spark cluster add-user --id spark --username admin

Alternatively, you can add the SSH key as a parameter when running the add-user command.

aztk spark cluster add-user --id spark --username admin --ssh-key <your_key_OR_path_to_key>

You can also use a password to create your user:

aztk spark cluster add-user --id spark --username admin --password <my_password>

Using a SSH key is the recommended method.

SSH and Port Forwarding

After a user has been created, SSH into the Spark container on the master node with:

aztk spark cluster ssh --id spark --username admin

If you would like to ssh into the host instead of the Spark container on it, run:

aztk spark cluster ssh --id spark --username admin --host

If you ssh into the host and wish to access the running Docker Spark environment, you can run the following:

sudo docker exec -it spark /bin/bash

Now that you're in, you can change directory to your familiar $SPARK_HOME

cd $SPARK_HOME

Debugging your Spark Cluster

If your cluster is in an unknown or unusbale state, you can debug by running:

aztk spark cluster debug --id <cluster-id> --output </path/to/output/directory/>

The debug utility will pull logs from all nodes in the cluster. The utility will check for:

	free diskspace

	docker image status

	docker container status

	docker container logs

	docker container process status

	aztk code & version

	spark component logs (master, worker, shuffle service, history server, etc) from $SPARK_HOME/logs

	spark application logs from $SPARK_HOME/work

Please be careful sharing the output of the debug command as secrets and application code are present in the output.

Interact with your Spark cluster

By default, the aztk spark cluster ssh command port forwards the Spark Web UI to localhost:8080, Spark Jobs UI to localhost:4040, and Spark History Server to your locahost:18080. This can be configured in .aztk/ssh.yaml.

Next Steps

	Run a Spark job

	Configure the Spark cluster using custom commands

	Bring your own Docker image or choose between a variety of our supported base images to manage your Spark and Python versions

Custom scripts

Custom scripts allow for additional cluster setup steps when the cluster is being provisioned. This is useful
if you want to install additional software, and if you need to modify the default cluster configuration for things such as modifying spark.conf, adding jars or downloading any files you need in the cluster.

You can specify the location of custom scripts on your local machine in .aztk/cluster.yaml. If you do not have a .aztk/ directory in you current working directory, run aztk spark init or see Getting Started. Note that the path can be absolute or relative to your current working directory.

The custom scripts can be configured to run on the Spark master only, the Spark workers only, or all nodes in the cluster (Please note that by default, the Spark master node is also a Spark worker). For example, the following custom script configuration will run 3 custom scripts in the order they are provided:

custom_scripts:
 - script: ./custom-scripts/simple.sh
 runOn: all-nodes
 - script: ./custom-scripts/master-only.sh
 runOn: master
 - script: ./custom-scripts/worker-only.sh
 runOn: worker

The first script, simple.sh, will run on all nodes and will be executed first. The next script, master-only.sh will run only on nodes that are Spark masters and after simple.sh. The next script, worker-only.sh, will run last and only on nodes that are Spark workers.

Directories may also be provided in the custom_scripts section of .aztk/cluster.yaml.

custom_scripts:
 - script: /custom-scripts/
 runOn: all-nodes

The above configuration takes the absolute path /custom-scripts/ and uploads every file within it. These files will all be executed, although order of exection is not guarenteed. If your custom scripts have dependencies, specify the order by providing the full path to the file as seen in the first example.

Scripting considerations

	The default OS is Ubuntu 16.04.

	The scripts run on the specified nodes in the cluster after Spark has been installed.

	The scripts execute in the order provided

	If a script directory is provided, order of execution is not guarenteed

	The environment variable $SPARK_HOME points to the root Spark directory.

	The environment variable $IS_MASTER identifies if this is the node running the master role. The node running the master role also runs a worker role on it.

	The Spark cluster is set up using Standalone Mode

Provided Custom Scripts

HDFS

A custom-script to install HDFS (2.8.2) is provided at custom-scripts/hdfs.sh directory. This will install and provision HDFS for your cluster.

To enable HDFS, add this snippet to the custom_scripts section of your .aztk/cluster.yaml configuration file:

custom_scripts:
 - script: ./custom-scripts/hdfs.sh
 runOn: all-nodes

When SSHing into the cluster, you will have access to the Namenode UI at the default port 50070. This port can be changed in the ssh.yaml file in your .aztk/ directory, or by passing the --namenodeui flag to the aztk spark cluster ssh command.

When enabled on the cluster, HDFS can be used to read or write data locally during program execution.

Docker

Azure Distributed Data Engineering Toolkit runs Spark on Docker.

Supported Azure Distributed Data Engineering Toolkit images are hosted publicly on Docker Hub [https://hub.docker.com/r/aztk/base/tags].

Versioning with Docker

The default image that this package uses is a the aztk-base Docker image that comes with Spark v2.2.0.

You can use several versions of the aztk-base image:

	Spark 2.2.0 - aztk/base:spark2.2.0 (default)

	Spark 2.1.0 - aztk/base:spark2.1.0

	Spark 1.6.3 - aztk/base:spark1.6.3

To enable GPUs you may use any of the following images, which are based upong the aztk-base images. Each of these images are contain CUDA-8.0 and cuDNN-6.0. By default, these images are used if the VM type used has a GPU.

	Spark 2.2.0 - aztk/gpu:spark2.2.0 (default)

	Spark2.1.0 - aztk/gpu:spark2.1.0

	Spark 1.6.3 - aztk/gpu:spark1.6.3

We also provide two other image types tailored for the Python and R users: aztk-r and aztk-python. You can choose between the following:

	Anaconda3-5.0.0 (Python 3.6.2) / Spark 2.2.0 - aztk/python:spark2.2.0-python3.6.2-base

	Anaconda3-5.0.0 (Python 3.6.2) / Spark 2.1.0 - aztk/python:spark2.1.0-python3.6.2-base

	Anaconda3-5.0.0 (Python 3.6.2) / Spark 1.6.3 - aztk/python:spark1.6.3-python3.6.2-base

	R 3.4.1 / Spark v2.2.0 - aztk/r-base:spark2.2.0-r3.4.1-base

	R 3.4.1 / Spark v2.1.0 - aztk/r-base:spark2.1.0-r3.4.1-base

	R 3.4.1 / Spark v1.6.3 - aztk/r-base:spark1.6.3-r3.4.1-base

Please note that each of these images also have GPU enabled versions. To use these versions, replace the "-base" part of the Docker image tag with "-gpu":

	Anaconda3-5.0.0 (Python 3.6.2) / Spark 2.2.0 (GPU) - aztk/python:spark2.2.0-python3.6.2-gpu

	Anaconda3-5.0.0 (Python 3.6.2) / Spark 2.1.0 (GPU) - aztk/python:spark2.1.0-python3.6.2-gpu

	Anaconda3-5.0.0 (Python 3.6.2) / Spark 1.6.3 (GPU) - aztk/python:spark1.6.3-python3.6.2-gpu

Today, these supported images are hosted on Docker Hub under the repo "base/gpu/python/r-base:"

 Configuration Files

Configuration Files

This section refers to the files in the directory .aztk that are generated from the aztk spark init command.

cluster.yaml

The core settings for a cluster are configured in the cluster.yaml file. Once you have set your desired values in .aztk/cluster.yaml, you can create a cluster using aztk spark cluster create.

This is the default cluster configuration:

id: <id of the cluster to be created>
id: spark_cluster

vm_size: <vm-size, see available options here: https://azure.microsoft.com/pricing/details/batch//>
vm_size: standard_a2

size: <number of dedicated nodes in the cluster, not that clusters must contain all dedicated or all low priority nodes>
size: 2

size_low_pri: <number of low priority nodes in the cluster, mutually exclusive with size setting>

username: <username for the linux user to be created> (optional)
username: spark

docker_repo: <name of docker image repo (for more information, see https://github.com/Azure/aztk/blob/master/docs/12-docker-image.md)>
docker_repo: aztk/base:spark2.2.0

custom_script: <path to custom script to run on each node> (optional)

wait: <true/false>
wait: true

Running aztk spark cluster create will create a cluster of 4 Standard_A2 nodes called 'spark_cluster' with a linux user named 'spark'. This is equivalent to running the command

aztk spark cluster create --id spark --vm-size standard_a2 --size 4 --username spark --wait

NOTE: This assumes that your SSH-key is configured in the .aztk/secrets.yaml file.

ssh.yaml

This is the default ssh cluster configuration:

username: <name of the user account to ssh into>
username: spark

job_ui_port: <local port where the job ui is forwarded to>
job_ui_port: 4040

job_history_ui_port: <local port where the job history ui is forwarded to>
job_history_ui_port: 18080

web_ui_port: <local port where the spark master web ui is forwarded to>
web_ui_port: 8080

jupyter_port: <local port which where jupyter is forwarded to>
jupyter_port: 8888

name_node_ui_port: <local port which where Name Node UI is forwarded to>
name_node_ui_port: 50070

rstudio_server_port: <local port which where rstudio server is forwarded to>
rstudio_server_port: 8787

connect: <true/false, connect to spark master or print connection string (--no-connect)>
connect: true

Running the command aztk spark cluster ssh --id <cluster_id> will ssh into the master node of the Spark cluster. It will also forward the Spark Job UI to localhost:4040, the Spark master's web UI to localhost:8080, and Jupyter to localhost:8888.

Note that all of the settings in ssh.yaml will be overrided by parameters passed on the command line.

Spark Configuration

The repository comes with default Spark configuration files which provision your Spark cluster just the same as you would locally. After running aztk spark init to initialize your working environment, you can view and edit these files at .aztk/spark-defaults.conf, .aztk/spark-env.sh and .aztk/core-site.xml. Please note that you can bring your own Spark configuration files by copying your spark-defaults.conf, spark-env.sh and core-site.xml into your .aztk/ direcotry.

If using aztk job submission, please note that both spark.shuffle.service.enabled and spark.dynamicAllocation.enabled must be set to true so that the number of executors registered with an application can scale as nodes in the job's cluster come online.

The following settings available in spark-defaults.conf and spark-env.sh are not supported:

spark-env.sh:

	SPARK_LOCAL_IP

	SPARK_PUBLIC_DNS

	SPARK_MASTER_HOST

	SPARK_MASTER_PORT

	SPARK_WORKER_PORT

	SPARK_MASTER_WEBUI_PORT

	Any options related to YARN client mode or Mesos

spark-defaults.conf:

	spark.master

Also note that this toolkit pre-loads wasb jars, so loading them elsewhere is not necessary.

History Server

If you want to use Spark's history server, please set the following values in your .aztk/spark-defaults.conf file:

spark.eventLog.enabled true
spark.eventLog.dir <path>
spark.history.fs.logDirectory <path>

Please note that the path for spark.eventLog.dir and spark.history.fs.logDirectory should most likely match so that the history server reads the logs that each Spark job writes. Also note that while the paths can be local (file:/), it is recommended that the paths be accessible by every node in the cluster so that the history server, which runs on the Spark master node, has access to all application logs. HDFS, WASB, ADL, or any other Hadoop API compliant storage system may be used.

If using WASB, ADL or other cloud storage services, be sure to set your keys in .aztk/core-site.xml. For more information, see the Cloud Storage documentation.

Configuring Spark Storage

The Spark cluster can be configured to use different cloud supported storage offerrings (such as Azure Storage Blobs, Azure Data Lake Storage, or any other supported Spark file system). More information can be found in the Cloud Storage documentation.

Placing JARS

Additional JAR files can be added to the cluster by simply adding them to the .aztk/jars directory. These JARS will automatically be added to Spark's default JAR directory. In the case of a naming conflict, the file in .aztk/jars will overwrite the file in the cluster. Typically new JARS must be registered with Spark. To do this, either run the Spark Submit command with a path to the JARS

aztk spark cluster submit --id <my_cluster_id> --jars $SPARK_HOME/jars/my_jar_file_1.jar <my_application> <my_parameters>

Or update the .aztk/spark-default.conf file as shown below to have it registered for all Spark applications.

spark.jars $spark_home/jars/my_jar_file_1.jar,$spark_home/jars/my_jar_file_2.jar

Note: This tool automatically registers several JARS for default cloud storage in the spark-default.conf file. If you want to modify this file, simply append any additional JARS to the end of this list.

Next Steps

	Add plugins

	Set up your Cloud Storage

 Azure Files

Azure Files

The ability to load a file share on the cluster is really useful when you want to be able to share data across all the nodes, and/or want that data to be persisted longer than the lifetime of the cluster. Azure Files [https://docs.microsoft.com/azure/storage/files/storage-files-introduction] provides a very easy way to mount a share into the cluster and have it accessible to all nodes. This is useful in cases where you have small data sets you want to process (less than 1GB) or have notebooks that you want to re-use between clusters.

Mounting an Azure Files share in the cluster only required updating the cluster.yaml file at .aztk/cluster.yaml. For example, the following configuration will load two files shares into the cluster, one with my notebooks and one will a small data set that I have previously uploaded to Azure Files.

azure_files:
 - storage_account_name: STORAGE_ACCOUNT_NAME
 storage_account_key: STORAGE_ACCOUNT_KEY
 # Name of the file share in Azure Files
 file_share_path: data
 # Mount point on the node in the cluster
 mount_path: /mnt/data
 - storage_account_name: STORAGE_ACCOUNT_NAME
 storage_account_key: STORAGE_ACCOUNT_KEY
 # Name of the file share in Azure Files
 file_share_path: notebooks
 # Mount point on the node in the cluster
 mount_path: /mnt/notebooks

From the cluster I can now access both of these file shares directly simply by navigating to /mnt/data or /mnt/notebooks respectively.

 Plugins

Plugins

Supported Plugins

AZTK ships with a library of default plugins that enable auxillary services to use with your Spark cluster.

Currently the following plugins are supported:

	JupyterLab

	Jupyter

	HDFS

	RStudioServer

	Spark UI Proxy

Enable a plugin using the CLI

If you are uing the aztk CLI and wish to enable a supported plugin, you need to update you .aztk/cluster.yaml configuration file.

Add or uncomment the plugins section and set the plugins you desire to enable as follows:

plugins:
 - name: jupyterlab
 - name: jupyter
 - name: hdfs
 - name: spark_ui_proxy
 - name: rsutio_server
 version: "1.1.383"

Enable a plugin using the SDK

If you are uing the aztk SDK and wish to enable a supported plugin, you need to import the necessary plugins from the aztk.spark.models.plugin module and add them to your ClusterConfiguration object's plugin list:

from aztk.spark.models.plugins import RStudioServerPlugin, HDFSPlugin
cluster_config = ClusterConfiguration(
 ...# Other config,
 plugins=[
 JupyterPlugin(),
 RStudioServerPlugin(version="1.1.383"),
 HDFSPlugin(),
]
)

 Submitting an Application

Submitting an Application

Submitting a job to your Spark cluster in this package mimics the experience of a typical standalone cluster. A spark job will be submitted to the system and run to completion.

Spark-Submit

The spark-submit experience is mostly the same as any regular Spark cluster with a few minor differences. You can take a look at aztk spark cluster --help for more detailed information and options.

Run a Spark job:

aztk spark cluster submit --id <name_of_spark_cluster> --name <name_of_spark_job> <executable> <executable_params>

For example, run a local pi.py file on a Spark cluster

aztk spark cluster submit --id spark --name pipy examples/src/main/python/pi.py 100

NOTE: The job name (--name) must be atleast 3 characters long, can only contain alphanumeric characters including hyphens but excluding underscores, and cannot contain uppercase letters. Each job you submit must have a unique name.

Monitoring job

If you have set up a SSH tunnel with port fowarding, you can naviate to http://localhost:8080 and http://localhost:4040 to view the progess of the job using the Spark UI

Getting output logs

The default setting when running a job is --wait. This will simply submit a job to the cluster and wait for the job to run. If you want to just submit the job and not wait, use the --no-wait flag and tail the logs manually:

aztk spark cluster submit --id spark --name pipy --no-wait examples/src/main/python/pi.py 1000

aztk spark cluster app-logs --id spark --name pipy --tail

 Cloud storage

Cloud storage

Cloud stoarge for spark enables you to have a persisted storage system backed by a cloud provider. Spark supports this by placing the appropriate storage jars and updating the core-site.xml file accordingly.

Azure Storage Blobs (WASB)

Pre-built into this package is native support for connecting your Spark cluster to Azure Blob Storage (aka WASB). The required WASB jars are automatically placed in the Spark cluster and the permissions are pulled from your core-site.xml file under .aztk/core-site.xml.

To connect to your Azure Storage account, make sure that the storage fields in your .aztk/core-site.xml file are properly filled out. This tool already has the the basic template for using WASB filled out in the .aztk/core-site.xml file. Simply uncomment the in the "Azure Storage Blobs (WASB)" section and fill out the properties for MY_STORAGE_ACCOUNT_NAME, MY_STORAGE_ACCOUNT_SUFFIX and MY_STORAGE_ACCOUNT_KEY.

Once you have correctly filled out the .aztk/core-site.xml with your storage credentials, you will be able to access your storage accounts from your Spark job.

Reading and writing to and from Azure blobs is easily achieved by using the wasb syntax. For example, reading a csv file using Pyspark would be:

read csv data into data
dataframe = spark.read.csv('wasbs://MY_CONTAINER@MY_STORAGE_ACCOUNt.blob.core.windows.net/MY_INPUT_DATA.csv')

print off the first 5 rows
dataframe.show(5)

write the csv back to storage
dataframe.write.csv('wasbs://MY_CONTAINER@MY_STORAGE_ACCOUNt.blob.core.windows.net/MY_OUTPUT_DATA.csv')

Azure Data Lake (ADL)

Pre-built into this package is native support for connecting your Spark cluster to Azure Data Lake (aka ADL). The required ADL jars are automatically placed in the Spark cluster and the permissions are pulled from your core-site.xml file under .aztk/core-site.xml.

To connect to your Azure Storage account, make sure that the storage fields in your .aztk/core-site.xml file are properly filled out. This tool already has the the basic template for using ADL filled out inthe .aztk/core-site.xml file. Simply uncomment the in the "ADL (Azure Data Lake) Configuration" section and fill out the properties for MY_AAD_TENANT_ID, MY_AAD_CLIENT_ID and MY_AAD_CREDENTIAL.

Once you have correctly filled out the .aztk/core-site.xml with your Azure Data Lake credentials, you will be able to access your ADL stroage repositories from your Spark job.

Reading and writing to and from Azure Data Lake Storage is easily achieved by using the adl syntax. For example, reading a csv file using Pyspark would be:

read csv data into data
dataframe = spark.read.csv('adl://MY_ADL_STORAGE_ACCOUNT.azuredatalakestore.net/MY_INPUT_DATA.csv')

print off the first 5 rows
dataframe.show(5)

write the csv back to storage
dataframe.write.csv('adl://MY_ADL_STORAGE_ACCOUNT.azuredatalakestore.net/MY_OUTPUT_DATA.csv')

Note: The implementation of the ADL connector is designed to always access ADLS through a secure channel, so there is no adls file system scheme name. You will always use adl. For more information please take a look at https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-use-data-lake-store.

Note: In order to use ADL you must first create an AAD application and give it permissions to your ADL Storage account. There is a good tutorial on how to create the require AAD security objects to use ADL here [https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-create-service-principal-portal]. Not shown in this tutorial is that as a last step, you will need to give permissions the application you created permissions to your ADL Storage account.

Additional file system connectors

You can quickly add support for additional data repositories by adding the necessary JARS to your cluster, configuring the spark-defaults.conf and core-site.xml file accordingly.

Adding Jars

To add jar files to the cluster, simply add them to your local .aztk/jars directory. These will automatically get loaded into your cluster and placed under $SPARK_HOME/jars

Registering Jars

To register the jars, update the .aztk/spark-defaults.conf file and add the path to the jar file(s) to the spark.jars property

spark.jars $spark_home/jars/my_jar_file_1.jar,$spark_home/jars/my_jar_file_2.jar

Configuring the file system

Configuring the file system requires an update to the aztk/core-site.xml file. Each file system is unique and requires different setup in the core-site.xml. In .aztk/core-site.xml, we have preloaded templates to add WASB and ADL.

 SDK

SDK

Operationalize AZTK with the provided Python SDK.

Find some samples and getting stated tutorial in the examples/sdk/ directory of the repository.

Public Interface

Client

	cluster_copy(self, cluster_id: str, source_path: str, destination_path: str, internal: bool = False)

Copy a file to every node in the given cluster

Parameters:
- cluster_id: str
- the id of the cluster
- source_path: str
- the local path to the file to be copied
- destination_path: str
- the path (including the file name) that the file should be placed on each node.
- internal: bool
- if True, connects to the cluster using the local IP. Only set to True if the node's internal IP address is resolvable by the client.

	cluster_run(self, cluster_id: str, command: str, internal: bool = False)

Run a command on every node in the given cluster

Parameters:
- cluster_id: str
- the id of the cluster
- command: str
- the command to run on each node
- internal: bool
- if True, connects to the cluster using the local IP. Only set to True if the node's internal IP address is resolvable by the client.

	create_cluster(self, cluster_conf: aztk.spark.models.ClusterConfiguration, wait=False)

Create an AZTK cluster with the given cluster configuration

Parameters:

 - cluster_conf: models.ClusterConfiguration
 - the definition of the cluster to create
 - wait: bool = False
 - If true, block until the cluster is running, else return immediately

Returns:

 - aztk.spark.models.Cluster

	create_clusters_in_parallel(self, cluster_confs: List[aztk.models.ClusterConfiguration])

Create an AZTK clusters with the given list of cluster configurations

Parameters:

 - cluster_confs: List[aztk.models.ClusterConfiguration]

Returns:

 - None

	delete_cluster(self, cluster_id: str, keep_logs: bool = False)

Delete an AZTK cluster with the given ID

Parameters:

 - cluster_id: str
 - The ID of the cluster to delete
 - keep_logs: bool
 - If true, the logs associated with this cluster will not be deleted.

Returns:

 - None

	get_cluster(self, cluster_id: str)

Retrieve detailed information about the cluster with the given ID

Parameters:

 - cluster_id
 - the ID of the cluster to get

Returns:

 - aztk.models.Cluster()

	list_clusters(self)
Retrieve a list of existing AZTK clusters.

Returns:

 - List[aztk.models.Cluster]

	get_remote_login_settings(self, cluster_id: str, node_id: str)

Return the settings required to login to a node

Parameters:

 - cluster_id: str
 The cluster to login to
 - node_id: str
 The node to login to

Returns:

 - aztk.spark.models.RemoteLogin

	submit(self, cluster_id: str, application: aztk.spark.models.Application)

Parameters:

 - cluster_id: str
 The cluster that the application is submitted to
 - application: aztk.spark.models.Application
 The application to submit

Returns:

 - None

	submit_all_applications(self, cluster_id: str, applications: List[aztk.spark.models.Application])

Submit a list of applications to be exected on a cluster

Parameters:

 - cluster_id: str
 The cluster that the applications are submitted to
 - applications: List[aztk.spark.models.Application]
 List of applications to submit

Returns:

 - None

	wait_until_application_done(self, cluster_id: str, task_id: str)

Block until the given application has completed on the given cluster

Parameters:

 - cluster_id: str
 The cluster on which the application is running
 - task_id
 The application to wait for

Returns:

 - None

	wait_until_applications_done(self, cluster_id: str)

Block until all applications on the given cluster are completed

Parameters:

 - cluster_id: str
 The cluster on which the application is running

Returns:

 - None

	wait_until_cluster_is_ready(self, cluster_id: str)

Block until the given cluster is running

Parameters:

 - cluster_id: str
 The ID of the cluster to wait for

Returns:

 - aztk.spark.models.Cluster

	wait_until_all_clusters_are_ready(self, clusters: List[str])

Wait until all clusters in the given list are ready

Parameters:

 - clusters: List[str]
 A list of the IDs of all the clusters to wait for

Returns:

 - None

	create_user(self, cluster_id: str, username: str, password: str = None, ssh_key: str = None)

Create a user on the given cluster

Parameters:

 - cluster_id: List[str]
 The cluster on which to create the user

 - password: str
 The password to create the user with (mutually exclusive with ssh_key)

 - ssh_key: str
 The ssh_key to create the user with (mutually exclusive with password)

Returns:

 - None

	get_application_log(self, cluster_id: str, application_name: str, tail=False, current_bytes: int = 0)

Get the logs of a completed or currently running application

Parameters:

 - cluster_id: str
 The id of the cluster on which the application ran or is running.

 - application_name: str
 The name of the application to retrieve logs for

 - tail: bool
 Set to true if you want to get only the newly added data after current_bytes.

 - current_bytes: int
 The amount of bytes already retrieved. To get the entire log, leave this at 0. If you are streaming, set this to the current number of bytes you have already retrieved, so you only retrieve the newly added bytes.

Returns:

 - aztk.spark.models.ApplicationLog

	get_application_status(self, cluster_id: str, app_name: str)

Get the status of an application

Parameters:
- cluster_id: str
The id of the cluster to which the app was submitted

 - app_name
 the name of the application in question

Returns:

 - str

	submit_job(self, job_configuration)

Submit an AZTK Spark Job

Parameters:

 - job_configuration: aztk.spark.models.JobConfiguration
 The configuration of the job to be submitted

Returns:

 - aztk.spark.models.Job

	list_jobs(self)

List all created AZTK Spark Jobs

Parameters:

 - job_configuration: aztk.spark.models.JobConfiguration
 The configuration of the job to be submitted

Returns:

 - List[aztk.spark.models.Job]

	list_applicaitons(self, job_id)

List all applications created on the AZTK Spark Job with id job_id

Parameters:

 - job_id: str
 The id of the Job

Returns:

 - Dict{str: aztk.spark.models.Application or None}
 - the key is the name of the application
 - the value is None if the application has not yet been scheduled or an Application model if it has been scheduled

	get_job(self, job_id)

Get information about the AZTK Spark Job with id job_id

Parameters:

 - job_id: str
 The id of the Job

Returns:

 - List[aztk.spark.models.Job]

	stop_job(self, job_id)

Stop the AZTK Spark Job with id job_id

Parameters:

 - job_id: str
 The id of the Job

Returns:

 - None

	delete_job(self, job_id, keep_logs: bool = False)

Delete the AZTK Spark Job with id job_id

Parameters:

 - job_id: str
 The id of the Job
 - keep_logs: bool
 - If true, the logs associated with this Job will not be deleted.

Returns:

 - bool

	get_application(self, job_id, application_name)

Get information about an AZTK Spark Job's application

Parameters:

 - job_id: str
 The id of the Job
 - application_name: str
 The name of the Application

Returns:

 - aztk.spark.models.Application

	get_job_application_log(self, job_id, application_name)

Get the log of an AZTK Spark Job's application

Parameters:

 - job_id: str
 The id of the Job
 - application_name: str
 The name of the Application

Returns:

 - aztk.spark.models.ApplicationLog

	stop_job_app(self, job_id, application_name)

Stop an Application running on an AZTK Spark Job

Parameters:

 - job_id: str
 The id of the Job
 - application_name: str
 The name of the Application

Returns:

 - None

	wait_until_job_finished(self, job_id)

Wait until the AZTK Spark Job with id job_id is complete

Parameters:

 - job_id: str
 The id of the Job
 - application_name: str
 The name of the Application

Returns:

 - None

	wait_until_all_jobs_finished(self, jobs)

Wait until all of the given AZTK Spark Jobs are complete

Parameters:

 - jobs: List[str]
 The ids of the Jobs to wait for

Returns:

 - None

Models

	Application

The definition of an AZTK Spark Application as it exists in the cloud. Please note that this object is not used to configure Applications, only to read information about existing Applications. Please see ApplicationConfiguration if you are trying to create an Application.

Fields:

 - name: str
 - last_modified: datetime
 - creation_time: datetime
 - state: str
 - state_transition_time: datetime
 - previous_state: str
 - previous_state_transition_time: datetime
 - exit_code: int

	ApplicationConfiguration

Define a Spark application to run on a cluster.

Fields:

 - name: str
 Unique identifier for the application.

 - application: str
 Path to the application that will be executed. Can be jar or python file.

 - application_args: [str]
 List of arguments for the application

 - main_class: str
 The application's main class. (Only applies to Java/Scala)

 - jars: [str]
 Additional jars to supply for the application.

 - py_files: [str]
 Additional Python files to supply for the application. Can be .zip, .egg, or .py files.
 - files: [str]
 Additional files to supply for the application.

 - driver_java_options: str
 Extra Java options to pass to the driver.

 - driver_library_path: str
 Extra library path entries to pass to the driver.

 - driver_class_path: str
 Extra class path entries to pass to the driver. Note that jars added with --jars are automatically included in the classpath.

 - driver_memory: str
 Memory for driver (e.g. 1000M, 2G) (Default: 1024M).

 - executor_memory: str
 Memory per executor (e.g. 1000M, 2G) (Default: 1G).

 - driver_cores: str
 Cores for driver (Default: 1).

 - executor_cores: str
 Number of cores per executor. (Default: All available cores on the worker)

 - max_retry_count: int
 Number of times the Spark job may be retried if there is a failure

	ApplicationLog

Holds the logged data from a spark application and metadata about the application and log.

Fields:

 - name: str
 - cluster_id: str
 - log: str
 - total_bytes: int
 - application_state: str
 - exit_code: str

	Cluster

An AZTK cluster. Note that this model is not used to create a cluster, for that see ClusterConfiguration.

Fields:

 - id: str

 The unique id of the cluster

 - pool: azure.batch.models.CloudPool

 A pool in the Azure Batch service.

 - nodes: azure.batch.models.ComputeNodePaged

 A paging container for iterating over a list of ComputeNode objects

 - vm_size: str

 The size of virtual machines in the cluster. All virtual machines in a cluster are the same size. For information about available sizes of virtual machines, see Sizes for Virtual Machines (Linux) (https://azure.microsoft.com/documentation/articles/virtual-machines-linux-sizes/). AZTK supports all Azure VM sizes except STANDARD_A0 and those with premium storage (STANDARD_GS, STANDARD_DS, and STANDARD_DSV2 series).

 - visible_state

 The current state of the cluster. Possible values are:
 resizing = 'resizing'
 steady = 'steady'
 stopping = 'stopping'
 active = 'active'
 deleting = 'deleting'
 upgrading = 'upgrading'

 - total_current_nodes
 The total number of nodes currently allocated to the cluster.

 - total_target_nodes
 The desired number of nodes in the cluster. Sum of target_dedicated_nodes and target_low_pri_nodes.

 - current_dedicated_nodes
 The number of dedicated nodes currently in the cluster.

 - current_low_pri_nodes
 The number of low-priority nodes currently in the cluster. Low-priority nodes which have been preempted are included in this count.

 - target_dedicated_nodes
 The desired number of dedicated nodes in the cluster.

 - target_low_pri_nodes
 The desired number of low-priority nodes in the cluster.

- `ClusterConfiguration`

Define a Spark cluster to be created.

Fields:

 - custom_scripts: [CustomScript]
 A list of custom scripts to execute in the Spark Docker container.

 - cluster_id: str
 A unique ID of the cluster to be created. The ID can contain any combination of alphanumeric characters including hyphens and underscores, and cannot contain more than 64 characters. The ID is case-preserving and case-insensitive (that is, you may not have two IDs within an account that differ only by case).

 - vm_count: int
 The number of dedicated VMs (nodes) to be allocated to the cluster. Mutually exclusive with vm_low_pri_count.

 - vm_size: str
 The size of virtual machines in the cluster. All virtual machines in a cluster are the same size. For information about available sizes of virtual machines, see Sizes for Virtual Machines (Linux) (https://azure.microsoft.com/documentation/articles/virtual-machines-linux-sizes/). AZTK supports all Azure VM sizes except STANDARD_A0 and those with premium storage (STANDARD_GS, STANDARD_DS, and STANDARD_DSV2 series).

 - vm_low_pri_count: int
 The number of VMs (nodes) to be allocated to the cluster. Mutually exclusive with vm_count.

 - docker_repo: str
 The docker repository and image to use. For more information, see [Docker Image](./12-docker-image.md).

 - spark_configuration: aztk.spark.models.SparkConfiguration
 Configuration object for spark-specific values.

	Custom Script

A script that executed in the Docker container of specified nodes in the cluster.

Fields:

 - name: str
 A unique name for the script
 - script: str or aztk.spark.models.File
 Path to the script to be run or File object
 - run_on: str
 Set which nodes the script should execute on. Possible values:

 all-nodes
 master
 worker

 Please note that by default, the Master node is also a worker node.

	File

A File definition for programmatically defined configuration files.

Fields:
- name: str
- payload: io.StringIO

	JobConfiguration

Define an AZTK Job.

Methods:

	__init__(self, id, applications=None, custom_scripts=None, spark_configuration=None, vm_size=None, docker_repo=None, max_dedicated_nodes=None, subnet_id=None)

Fields:

 - id: str
 - applications: List[aztk.spark.models.ApplicationConfiguration]
 - custom_scripts: str
 - spark_configuration: aztk.spark.models.SparkConfiguration
 - vm_size: int
 - gpu_enabled: str
 - docker_repo: str
 - max_dedicated_nodes: str
 - subnet_id: str

	Job

Methods:

__init__(self, cloud_job_schedule: batch_models.CloudJobSchedule, cloud_tasks: List[batch_models.CloudTask] = None)

Fields:

	id: str

	last_modified: datetime

	state: datetime

	state_transition_time: datetime

	applications: datetime

	SecretsConfiguration

The Batch, Storage, Docker and SSH secrets used to create AZTK clusters. For more help with setting these values see Getting Started.

Exactly one of service_principal and shared_key must be provided to this object. If both or none validation will fail.

Fields:
service_principal: ServicePrincipalConfiguration
shared_key: SharedKeyConfiguration
docker: DockerConfiguration

 ssh_pub_key: str
 ssh_priv_key: str

	ServicePrincipalConfiguration

Configuration needed to use aad auth.

Fields:
tenant_id: str
client_id: str
credential: str
batch_account_resource_id: str
storage_account_resource_id: str

	SharedKeyConfiguration

Configuration needed to use shared key auth.

Fields:
batch_account_name: str
batch_account_key: str
batch_service_url: str
storage_account_name: str
storage_account_key: str
storage_account_suffix: str

	DockerConfiguration

Configuration needed to use custom docker.

Fields:
endpoint: str
username: str
password: str

	SparkConfiguration

Define cluster-wide Spark specific parameters.

Fields:

 - spark_defaults_conf: str or aztk.spark.models.File
 Path or File object defining spark_defaults.conf configuration file to be used.

 - spark_env_sh: str or aztk.spark.models.File
 Path or File object defining spark_env.sh configuration file to be used.

 - core_site_xml: str or aztk.spark.models.File
 Path or File object defining the core-site.xml configuration file to be used.

 - jars: [str or aztk.spark.models.File]
 Paths to or File objects defining Additional Jars to be uploaded

 Define a custom plugin

Define a custom plugin

Full example

from aztk.spark.models.plugins import PluginConfiguration, PluginFile,PluginPort, PluginTarget, PluginTargetRole

cluster_config = ClusterConfiguration(
 ...# Other config,
 plugins=[
 PluginConfiguration(
 name="my-custom-plugin",
 files=[
 PluginFile("file.sh", "/my/local/path/to/file.sh"),
 PluginFile("data/one.json", "/my/local/path/to/data/one.json"),
 PluginFile("data/two.json", "/my/local/path/to/data/two.json"),
],
 execute="file.sh", # This must be one of the files defined in the file list and match the target path,
 env=dict(
 SOME_ENV_VAR="foo"
),
 args=["arg1"], # Those arguments are passed to your execute script
 ports=[
 PluginPort(internal="1234"), # Internal only(For node communication for example)
 PluginPort(internal="2345", public=True), # Open the port to the public(When ssh into). Used for UI for example
],

 # Pick where you want the plugin to run
 target=PluginTarget.Host, # The script will be run on the host. Default value is to run in the spark container
 target_role=PluginTargetRole.All, # If the plugin should be run only on the master worker or all. You can use environment variables(See below to have different master/worker config)
)
]
)

Parameters

PluginConfiguration

Name	Required?	Type	Description	
name	required	string	Name of your plugin(This will be used for creating folder, it is recommended to have a simple letter, dash, underscore only name)	
files	required	List[PluginFile	PluginTextFile]	List of files to upload
execute	required	str	Script to execute. This script must be defined in the files above and must match its remote path	
args	optional	List[str]	List of arguments to be passed to your execute scripts	
env	optional	dict	List of environment variables to access in the script(This can be used to pass arguments to your script instead of args)	
ports	optional	List[PluginPort]	List of ports to open if the script is running in a container. A port can also be specific public and it will then be accessible when ssh into the master node.	
target	optional	PluginTarget	Define where the execute script should be running. Potential values are PluginTarget.SparkContainer(Default) and PluginTarget.Host	
taget_role	optional	PluginTargetRole	If the plugin should be run only on the master worker or all. You can use environment variables(See below to have different master/worker config)	

PluginFile

Name	Required?	Type	Description
target	required	str	Where the file should be dropped relative to the plugin working directory
local_path	required	str	Path to the local file you want to upload(Could form the plugins parameters)

TextPluginFile

Name	Required?	Type	Description	
target	required	str	Where the file should be dropped relative to the plugin working directory	
content	required	str	io.StringIO	Path to the local file you want to upload(Could form the plugins parameters)

PluginPort

Name	Required?	Type	Description
internal	required	int	Internal port to open on the docker container
public	optional	bool	If the port should be open publicly(Default: False)

Environment variables availables in the plugin

AZTK provide a few environment variables that can be used in your plugin script

	AZTK_IS_MASTER: Is the plugin running on the master node. Can be either true or false

	AZTK_IS_WORKER: Is a worker setup on the current node(This might also be a master if you have worker_on_master set to true) Can be either true or false

	AZTK_MASTER_IP: Internal ip of the master

Debug your plugin

When your plugin is not working as expected there is a few things you do to invesigate issues

Check the logs, you can either use the debug tool or BatchLabs [https://github.com/Azure/BatchLabs]
Navigate to startup/wd/logs/plugins
[image:]

	Now if you see a file named <your-plugin-name>.txt under that folder it means that your plugin started correctly and you can check this file to see what you execute script logged.

	IF this file doesn't exists this means the script was not run on this node. There could be multiple reasons for this:

	If you want your plugin to run on the spark container check the startup/wd/logs/docker.log file for information about this

	If you want your plugin to run on the host check the startup/stdout.txt and startup/stderr.txt

The log could mention you picked the wrong target or target role for that plugin which is why this plugin is not running on this node.

 GPU

GPU

Use GPUs to accelerate your Spark applications. When using a GPU enabled Azure VM [https://azure.microsoft.com/en-us/pricing/details/batch/], your docker image will contain CUDA-8.0 and cuDnn-6.0 by default. See Docker Image for more information about the AZTK Docker images.

[NOTE: Azure does not have GPU enabled VMs in all regions. Please use this link [https://azure.microsoft.com/en-us/pricing/details/batch/] to make sure that your Batch account is in a region that has GPU enabled VMs]

AZTK uses Nvidia-Docker to expose the VM's GPU(s) inside the container. Nvidia drivers (ver. 384) are installed at runtime.

Tutorial

Create a cluster specifying a GPU enabled VM

aztk spark cluster create --id gpu-cluster --vm-size standard_nc6 --size 1

Submit your an application to the cluster that will take advantage of the GPU

aztk spark cluster submit --id gpu-cluster --name gpu-app ./examples/src/main/python/gpu/nubma_example.py

Installation Location

By default, CUDA is installed at /usr/local/cuda-8.0.

 Jobs

Jobs

In the Azure Distributed Data Engineering Toolkit,a Job is an entity that runs against an automatically provisioned and managed cluster. Jobs run a collection of Spark applications and and persist the outputs.

Creating a Job

Creating a Job starts with defining the necessary properties in your .aztk/job.yaml file. Jobs have one or more applications to run as well as values that define the Cluster the applications will run on.

Job.yaml

Each Job has one or more applications given as a List in Job.yaml. Applications are defined using the following properties:

 applications:
 - name:
 application:
 application_args:
 -
 main_class:
 jars:
 -
 py_files:
 -
 files:
 -
 driver_java_options:
 -
 driver_library_path:
 driver_class_path:
 driver_memory:
 executor_memory:
 driver_cores:
 executor_cores:

Please note: the only required fields are name and application. All other fields may be removed or left blank.

NOTE: The Applcaition name can only contain alphanumeric characters including hyphens and underscores, and cannot contain more than 64 characters. Each application must have a unique name.

Jobs also require a definition of the cluster on which the Applications will run. The following properties define a cluster:

 cluster_configuration:
 vm_size: <the Azure VM size>
 size: <the number of nodes in the Cluster>
 docker_repo: <Docker Image to download on all nodes>
 subnet_id: <resource ID of a subnet to use (optional)>
 custom_scripts:
 - List
 - of
 - paths
 - to
 - custom
 - scripts

Please Note: For more information about Azure VM sizes, see Azure Batch Pricing [https://azure.microsoft.com/en-us/pricing/details/batch/]. And for more information about Docker repositories see Docker.

The only required fields are vm_size and either size or size_low_pri, all other fields can be left blank or removed.

A Job definition may also include a default Spark Configuration. The following are the properties to define a Spark Configuration:

 spark_configuration:
 spark_defaults_conf: </path/to/your/spark-defaults.conf>
 spark_env_sh: </path/to/your/spark-env.sh>
 core_site_xml: </path/to/your/core-site.xml>

Please note: including a Spark Configuration is optional. Spark Configuration values defined as part of an application will take precedence over the values specified in these files.

Below we will define a simple, functioning job definition.

Job Configuration

job:
 id: test-job
 cluster_configuration:
 vm_size: standard_f2
 size: 3

 applications:
 - name: pipy100
 application: /path/to/pi.py
 application_args:
 - 100
 - name: pipy200
 application: /path/to/pi.py
 application_args:
 - 200

Once submitted, this Job will run two applications, pipy100 and pipy200, on an automatically provisioned Cluster with 3 dedicated Standard_f2 size Azure VMs. Immediately after both pipy100 and pipy200 have completed the Cluster will be destroyed. Application logs will be persisted and available.

Commands

Submit a Spark Job:

aztk spark job submit --id <your_job_id> --configuration </path/to/job.yaml>

NOTE: The Job id (--id) can only contain alphanumeric characters including hyphens and underscores, and cannot contain more than 64 characters. Each Job must have a unique id.

Low priority nodes

You can create your Job with low-priority [https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms] VMs at an 80% discount by using --size-low-pri instead of --size. Note that these are great for experimental use, but can be taken away at any time. We recommend against this option when doing long running jobs or for critical workloads.

Listing Jobs

You can list all Jobs currently running in your account by running

aztk spark job list

Viewing a Job

To view details about a particular Job, run:

aztk spark job get --id <your_job_id>

For example here Job 'pipy' has 2 applications which have already completed.

Job pipy
--
State: | completed
Transition Time: | 21:29PM 11/12/17

Applications	State	Transition Time
pipy100 | completed | 21:25PM 11/12/17
pipy200 | completed | 21:24PM 11/12/17

Deleting a Job

To delete a Job run:

aztk spark job delete --id <your_job_id>

Deleting a Job also permanently deletes any data or logs associated with that cluster. If you wish to persist this data, use the --keep-logs flag.

You are only charged for the job while it is active, Jobs handle provisioning and destorying infrastructure, so you are only charged for the time that your applications are running.

Stopping a Job

To stop a Job run:

aztk spark job stop --id <your_job_id>

Stopping a Job will end any currently running Applications and will prevent any new Applications from running.

Get information about a Job's Application

To get information about a Job's Application:

aztk spark job get-app --id <your_job_id> --name <your_application_name>

Getting a Job's Application's log

To get a job's application logs:

aztk spark job get-app-logs --id <your_job_id> --name <your_application_name>

Stopping a Job's Application

To stop an application that is running or going to run on a Job:

aztk spark job stop-app --id <your_job_id> --name <your_application_name>

 Tests

Tests

AZTK comes with a testing library that can be used for verification, and debugging. Please note that some tests will provision and test real resources in Azure, and as a result, will cost money to run. See Integration Tests for more details.

[bookmark: IntegrationTests] Integration Tests

Integration tests use the credentials given in your .aztk/secrets.yaml file to spin up real Clusters and Jobs to verify the functionality of the library. Please note that these tests will cost money to run. All created Clusters nad Jobs will be deleted when the test completes.

Since each integration test spins up a Cluster or Job, you may want to run the tests in parallel to reduce the time needed to complete the testing library:

pytest $path_to_repo_root -n <5>

Note: $path_to_repo_root represents the path to the root of the aztk repository, and is only required if you are running the tests from a different location.

Please note that the number passed to the -n flag determines the number of tests you wish to run in parallel. Parallelizing the tests will increase the number of CPU cores used at one time, so please verify that you have the available core quota in your Batch account.

 Getting Started

Getting Started

Set up your azure account and resources.

Clusters

Create, manage and interact with a cluster. Also learn about connecting to the master node, using Jupyter and viewing the Spark UI.

Custom Scripts

Add custom configuraiton scripts to your cluster.

Docker Image

Learn about setting a custom docker image or how you can use Docker to manage versioning.

Spark Submit

Submit a Spark job to the cluster.

Cloud Storage

Using cloud storage to load and save data to and from persisted data stores.

_images/AAD_1.png
Microsoft Azure O Search resources, services and docs x @5 & O O Ml(mwn‘

«| " Home » micosoft- Properies
- Etma microsoft - Properties * X
Aur Active Directory
Al services O Gt «| BAswe xo
* FAVORITES o Quick start
L] p=iterd manace Countyorregion
United States
Al resources A Users and groups
Location
Batch accounts Enterprise applications Asia, Urited States, Europe datacenters
Devices Notifcation language

B storage accounts

e
) RS Aep reg

® Application proxy
& App senvices

& Licenses [
& B []
® Aure AD Comnect
S sl databases
B Custom domain names

Azure Cosmos DB

Mobility (MDM and MAM)

B virtual machines M Company branding

@ Load balancers £ User settings

< Virtual networks

8 Notifiations setings

Azure Active Directory

Monitor secumiTy

o @ MRASener

& Users flagged forrisk

L
L]
@ advisor @ Conditional access
L
(o]

Cost Management + Billng
A Rty signins

Help + support

? subscriptions e

Sign-ins

@ Keyvaults

_images/AppRegistrations_1.png
Microsoft Azure

4

Create a resource

Al services

* FAVORITES

Dashboard

Al resources

Batch accounts.

Storage accounts

Resource groups

App Services

Function Apps

SQL databases

& Azure Cosmos DB

Virtual machines

Load balancers

Virtual networks

Azure Active Directory

Monitor

Advisor

Security Center

‘Cost Management + Biling

Help + support

Subscriptions

Key vaults

Al services | app registrations

% App registrations

x]

P Search resources, services and docs

_images/AppRegistrations_2.png
Microsoft Azure

R Search resources, services and docs x @5 B O 06 Ml(mwrr.

| Home » App registrations > Create
= create a resource 2 X Create a x
Allservices X Troubleshoot O
MyAppName
* FavoRres spplications, please visit the Microsoft Application Console.
Application type ©
[Dashboard Web app / API
ApPLICATION TYPE APPUCATION D .
All resources Son.cqUCe)
Web app / API https://example.com

Batch accounts.

B storage accounts

) Resource groups
& App senvices

% Function Apps
S sl databases
& Azure Cosmos DB
B virtual machines
@ Load balancers
> Virtual networks
@ Azure Active Directory
@ wonitor

@ advisor

@ security Center

(o]

‘Cost Management + Biling

Help + support
4 subscriptions

@ Keyvaults

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/Batch_2.png
Microsoft Azure New > BatchService > New Batch account

= New Batch account a x

[R——

+ | Acomtmmee

mybatchaccountdemospark v

ukwestbatch azure.com
* Subscription

* Resource group ®

O Createnew @ Use existing

soad] 7]
-z
west S
)
>

Select a storage account

Pool allocation mode ®

Batch service | User subscription

L]
(]
2
-
=
@
"
=

e
(0]

Pin to dashboard

P P> & 00

_images/Batch_3.png
Microsoft Azure

-} create a resource

= Allservices

* FAVORITES

[Dashboard

Al resources

Batch accounts.

B storage accounts
) Resource groups
& App services
% Function Apps

S sl databases

& Azure Cosmos DB

Virtual machines
@ Load balancers
> Virtual networks
@ Azure Active Directory
@ wonitor

@ advisor

® security Center

© cost Management + iling

Help + support

4 subscriptions

Key vaults

Home > Batch accounts >

Batch accounts

[rm—

& Add

Edit columns.

Properties

€A % I .. Properies

) «

®. Ovenview

Bl Activity log
2 Access control (IAM)

& T

SerTNGS

© Quotss

B Storage account
T Keys
& Lods

[Jye—p—"

FERTURES

B sppications

B Pools

B o

Job schedules

B Certificates

MONITORING

Account usage.

| Metrics

W Alert ules:

B Dingnosticsfogs

SUPPORT + TROUBLESHOOTING

STATUS

Online

LOCATION

URL

SUBSCRIPTION NAME

Change subscription

SUBSCRIPTION ID

RESOURCE GROUP.

Change resource group

RESOURCE ID

P Search resources, services and docs

®> & © 0

MICROSOFT '

2 X

Copied

I

POOL ALLOCATION MODE

_images/AppRegistrations_3.png
Microsoft Azure

R Search resources, services and docs x B> & 00O Ml(mwrr'

«| " Home > App registrations > MyAppName > Settings > Keys

+ createaresource MyAppName # X Settings X Keys

Registered app

= Allservices

Manifest [Delete X Discard 7 Upload Public Key

Display name
* FavoRiTes MyAppName o
Application type Object D
18| Dashboard Web app/ APl . Tl Properties > Passwords
Home page [y —p—"
= MyAppName Reply URLS >
Alrzzimezs o DESCRIFTION EXPIRES VALUE
Owners >
Batch accounts N i=mero
| | Smpsmms A aceess o v
) R %, Required permissions >
@ App senvices Public Keys
%> Function Apps TROUBLESHOOTING + SUPPORT THUMBPRINT START DATE ExeIRes
S sl databases X Troubleshoot > No results.
P & Newsupport request >

& Azure Cosmos DB

Virtual machines
@ Load balancers
> Virtual networks
@ Azure Active Directory
@ Monitor

@ advisor

® security Center

(o]

‘Cost Management + Biling

Help + support
4 subscriptions

@ Keyvaults

_images/Batch_1.png
Microsoft Azure New > BachService L ®> & 0 o CEEENEN

New a x Batch Service # 0 X
Mircsoft
4= e o e e i oot S T e e
P Search the Marketplace. resource management for developers in organizations, independent software vendors, and cloud
- service providers. Both new and existing high performance computing (HPC) applications running on
Azure Marketplace st femomed] Seeall workstations and clusters taday can be readily enabled to run in Azure at scal, and with no on-
@ premises infrastructure required. Common application workloads include image and video rendering,
| —— media transcoding, engineering simulations, Monte Carlo simulations, and software test execution,
Get started e I B i e r e e e
pe— Create incividual tasks for execution, With Azure Batch, you can scale from a few VM, Up to tens of
SIS thousands of VM, and run the largest, most resource-intensive workloads.
Networking Windows Server 2016 Datacenter
&
. MW= EE
Web + Mobile Red Hat Enterprise Linux 7.2 PUBLISHER Microsoft
Databases Create

Service Overview
Data + Analytics USEFUL LINKS Product Documentation

Pricing Details

Ubuntu Server 16.04 LTS

Al + Cognitive Services Create

Internet of Things
SQL Server 2016 SP1 Enterprise on
Windows Server 2016

Create

Enterprise Integration

Security + Identity

L]
(]
2
L
=
@
"
=

Developer tools Virtual machine scale set

Create
Monitoring + Management

e Add-ons Azure Container Service
Containers reae
Blockchaty Azure Container Registry
s G
a Function App
o Create
Y Batch Service
Create
-
%

_images/Storage_1.png
Microsoft Azure New > Storage account - blob, file, table, queue L ®> & O 06 q .

New o x . Storage account - blob, file, table, queue
Micosot
+ Microsoft Azure provides scalable, durable cloud storage, backup, and recovery soluions for any
Search the Marketplace data, big or small.ttworks with the infrastructure you already have to cost-efectively enhance your
9 youalready y ¥
™ existng applications and business continuity trategy, and provide th storage requied by your
et et seeal doud appiications, including unsructured text o binary ata such s video, audio, and images
W
) Storage account - blob, file, table, EHEREEE
queue
ez s PUBLISHER Microsoft
Networking Data Lake Store
o Service overview
Storage USEFUL LINKS Documentation
Web + Mobile Pricing
StorSimple Physical Device Series
Databases Create

Data + Analytics
StorSimple Virtual Device Series

Al + Cognitive Services p—

Internet of Things
Backup and Site Recovery (OMS)
Create

Enterprise Integration

Security + Identity

AltaVault AVA-c4, version 43.1

Create

Developer tools

-
f

Monitoring + Management

Add-ons SoftNAS Cloud Express

Create

(4

Containers

Blockchain

%

_images/Storage_2.png
Microsoft Azure New > Storage account - blob, file, table, queue > Create storage account L ®> & O 06 %'

Create storage account o x
+ The costof your storage account depends on the
usage and the options you choose belo
L Learn more.
© Name®
I
[m—— v

corewindowsnet

Deployment model ®

Resource manager | Classic

Account kind ®

General purpose v

Performance ®

Standard | Premium

Replication ®
Locally-redundant storage (LRS) v

* Storage service encryption (blobs and files) ®

Disabled | Enabled

* Secure transfer required ®

L]
(]
2
L
=
@
"
=

Disabled | Enabled

* Subscription

Resource group

e
(0]

O Createnew @ Use existing

sparkdemo V|
= * Location
WestUs 2 v
L3
-
Pinto dashboard
%

_images/Batch_4.png
Microsoft Azure

x > B OO0 wesceorr @)

« | Home » Batch accounts > - Access control (AM) P et X
4 @emormmm Batch accounts KA X .o - Access control (IAM)
Microsofe M garcn sccoune
Role®
Az + Add 5 Edit columns. ++ More « [femove o Roles Q) Refresh e
Assign access 10 ©
I N Type® Role® Azure AD user, group, or application
Sitems Al v | [3sekected v
[Dashboard B Activity log Select®
nAmE 16 items (8 Users, 8 Service Principals) MyAppName
Al resources Access control (AM)
NamE vee RoLE
Batch accounts & Tags
B storage accounts SETTINGS.
() Resource groups Il properties
@ App senvices ® Quotas
B Storage account
% Function Apps g
T ke
S sl databases
& ods
‘Azure Cosmos DB
B Automation scrpt
B virtual machines
FeATURES Selected members:
@ Load balancers
W Appiications
> Virtual networks W Meetame Remove
B pooks
‘Aaure Active Directo
A4 & B s
Ot [
@ Advisor B Certifcates
@ security Center
MONTTORING
© cost Management + iling PR
& Help + support Metrics
4 subscriptions W Alert rules.
@ Keyvaus Bl Diagnostics logs

S— o

_images/Batch_secrets.png
Microsoft Azure (@)~ Xevs
=, G - s

Baten account

+ P Search (Cirt+)) S TR e ——
L] Keys
=, Overview
i
W
B Activitylog
L

i Access control (AM)

& Tag

sermves
1 properties

© auons

B Sstorage account
® ke
Q Lok

[e—p—

=
®
"
]

FeATURES
B Applcations

B pooi
B obs

=

B Job schedules
=
e M Certificates
L4

Account usage

-

i et
& W Aert s

> B pinanactics loas

_images/Storage_3.png
Microsoft Azure

-} create a resource

= Allservices

* FAVORITES

[Dashboard

Al resources

Batch accounts.

B storage accounts
) Resource groups
& App services
% Function Apps

S sl databases

& Azure Cosmos DB

Virtual machines
@ Load balancers
> Virtual networks
@ Azure Active Directory
@ wonitor

@ advisor

® security Center

© cost Management + iling

Help + support

Subscriptions

Key vaults

Home > Storage accounts >

Storage accounts

Microsoft

& Add

Edit columns.

- Properties

L A X

)

- Properties

Storage account

B Overview

Bl Activity log

2 Access control (IAM)
& Tags

e

sermnes
BB Storage Explorer (preview)
T Accesskeys

= Configuration

& Shared accesssignature

“¥ Firewalls and virtual networks

i Metrics (preview)

8 Lo

[e———

auon servce
W Browse blobs
& cors

B Custom domain
& Encyption

= Azure CON

4 Add Azure Search

© Metiics

«

R Search resources, services and docs x @5 B © 06 Ml(mwrr'

2 X

STATUS
Available

PROVISIONING STATE
Succeeded

KIND

Storage (general purpose v1)

sk
Standard LRS

CREATED
11/17/2017 10:50:36 AM

PRIMARY BLOB SERVICE ENDPOINT
PRIMARY FILE SERVICE ENDPOINT

PRIMARY QUEUE SERVICE ENDPOINT

PRIMARY TABLE SERVICE ENDPOINT

RESOURCE ID

[

RESOURCE GROUP.

Change resource group

_images/Storage_4.png
Home > Storage accounts >

Storage accounts

Microsoft

& Add

Edit columns.

P Search resources, services and docs

Access control (AM)

K A % - Access control (IAM)

Storage account

oo+ More @ S Roles Q) Refresh 2 Help
B Overicw Name @ Type0 Role®
Al V| [2selected
1 Actitylog

16 tems (8 Users, 8 Service Pincipals)
Access control (AM)
NamE vee

@ Toss

S

sermnes
[——
T Accesskeys

= Configuration

& Shared accesssignature

¥ Firewalls and virtual networks

Metric (preview)
Ml properties
a Lods

[e———

auon servce
W Browse blobs
& cors

B Custom domain
& Encyption

= Azure CON

4 Add Azure Search

© Metiics

RoLE

x

®> & © 0

Add permissions

Role®
Contributor

Assign access 10 ©
‘Azure AD user, group, or application

Select @

MyAppName

iscard

MICROSOFT ‘

X

_images/Storage_secrets.png
Microsoft Azure - Access keys /O ®> 00 Ml(wson'
? D - /c